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De�nition

Consider a real stationary markov zero mean gaussian process

X =(Xt , t ∈ R) with a continuous nondegenerated autocorrelation

(ρ(h), h ≥ 0), then, there exists θ > 0 such that

ρ(h) = exp(−θh ), h ≥ 0,

this is the so-called Ornstein-Uhlenbeck process (OU).
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One may also de�ne OU as the unique stationary solution of the

stochastic di�erential equation

dXt =−θXt dt + σdWt

where W is a bilateral standard Wiener process.

Interpretation: X is the speed of a particle submitted to brownian

motion.

Finally, another simple form of OU is

Xt =
e−θt

√
2θ

W1(e2θt), t ≥ 0,

where W1 is a standard Wiener process.
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The information inequality

In the following we suppose that σ = 1 and we intend to estimate

θ and g(θ) from the observation of X(T ) = (Xt , 0≤ t ≤ T ).
The information inequality ( or Fréchet-Darmois-Cramer-Rao

inequality) is

Eθ (g(θT )−g(θ))2 ≥

(
b
′
T (θ) +g

′
(θ)
)2

IT (θ)
+b2T (θ),

where IT (θ) is the Fisher information and bT (θ) the bias of the

estimator g(θT ). Thus, in order to evaluate the above lower bound,

it is necessary to study the bias and the bias derivative of g(θT ).
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A family of asymptotically e�cient estimators

Consider the family zof estimators of the form

θT = θT (α,β ,4T ) =
T −αX 2

0 −βX 2
T

2BT
+4T ,

where BT =
∫ T
0 X 2

t dt, α,β ∈ R and 4T is a statistic satisfying

(C) ∆T
a.s.−−→ 0,T

p
2Eθ |4T |p→ 0,p ≥ 1,TEθ (4T )→ δθ , T → ∞

where δθ depends on (4T ) and θ
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Examples

The empirical estimator (EE) is given by

θ̄T =
T

2BT

The conditional likelihood of X(T ) is

L = exp

(
ATθ −BT

θ2

2

)
where AT =

T+X 2
0−X 2

T

2 , hence, the conditional maximum likelihood

estimator (CMLE):

θ̂T =
AT

BT
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Now, the likelihood is

L̃ =

√
θ

π
exp(−θX 2

0 ) .L,

and the maximum likelihood estimator (MLE):

θ̃T =
(AT −X 2

0 ) +
√

(AT −X 2
0 ) +2BT

2BT
,

Finally, the reverse conditional maximum likelihood

estimator(RCMLE) has the form

θ̌T =
A
′
T

BT
,

where A
′
T =

T+X 2
T−X 2

0

2 .
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These estimators belong to z :

θ̄T = θT (0,0,0)

θ̂T = θT (−1,1,0)

θ̌T = θT (1,−1,0)

θ̃T = (1,1,4T ),

where 4T = T
4BT

[(
Γ2T + 8BT

T 2

) 1
2 −ΓT

]
, with ΓT = 1− X 2

0+X
2
T

T
.

Note that z is a convex set.
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Asymptotic e�ciency

Proposition

For each θT ∈zone has

T
p
2 Eθ |θT −θ |p→ (2θ)

p
2 Eθ |N|p, p ≥ 1,

and

T
1
2 (θT −θ) =⇒ (2θ)

1
2N,

where N ∼N (0,1).

Proof.

It is an easy consequence of Kutoyants (2004,2009).
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Bias of θ̄T

First note that

θ̄T =
1

2

(
θ̂T + θ̌T

)
Then, since X is gaussian stationary, the three estimators have the

same bias. Moreover this bias is positive:

Eθ (θ̄T ) >
1

Eθ (2T−1BT )
=

1

2(2θ−1)
= θ

In order to study this bias one may use the representation of X as

the transform of a Wiener process for obtaining

bT (θ ,X ) = θbθT (1,Y )

where Yt =
√

θ Xt/θ .
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It follows that

b
′
T (θ) = O (

lnT

T
)

and

T bT (θ)→ 2
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The general case

For the general θT one obtains

∂

∂θ
Eθ (θT −θ)→ 0,

and

T .Eθ (θT (α,β ,∆T )−θ)→ 2− α + β

2
+ δθ .

For the MLE one has again

T .Eθ (θ̃T −θ)→ 2.
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Asymptotic e�ciency of g(θ ∗T )

Let g : R∗+ 7→ R, in order to estimate g(θ), one sets

θ
∗
T = max (θT , e−T ) ,θT ∈F , T > 0.

Clearly θ ∗T and θT have the same asymptotic behaviour and, under

mild conditions, g(θ ∗T ) is asymptotically e�cient.

For example, if g is derivable, one has

T
1/2 (g(θ

∗
T )−g(θ))⇒ (2θ)

1/2
∣∣∣g ′(θ)

∣∣∣N,

and if, in addition
∣∣∣g ′(θ)

∣∣∣≤ cθ θm, m ≥ 0, then

Eθ

(
T

p/2 |g(θ
∗
T )−g(θ)|p

)
→ (2θ)

p/2
∣∣∣g ′(θ)

∣∣∣p Eθ [|N|p] p ≥ 1.
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Asymptotic bias for g(θ )

Proposition

If g has three continuous derivatives with

|g ′′′(θ)| ≤ c θ
m, θ > 0 (c > 0,m ≥ 0)

and θT = θT (α,β ,∆T ) then

T .Eθ (g(θ
∗
T )−g(θ))→

(
2− α + β

2
+ δθ

)
g ′(θ) + θg”(θ).

Again, the four �classical� estimators have the same asymptotic

bias: 2g
′
(θ) + θ g

′′
(θ).
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Bias derivative

Proposition

If g has one continuous derivative such that∣∣g ′(u)
∣∣≤ c |u|m u∈ R,

for some c > 0 and m ≥ 0, and if E
(
g(θ .θ̄θT (Y )

)
is di�erentiable

under expectation, then

∂

∂θ
Eθ

(
g(θ̄T )−g(θ)

)
−−−→
T→∞

0,

and the same property holds for each θT in z.
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Examples

If g(θ) is a polynomial the result applies. In particular

T .Eθ (θ̄
2
T −θ

2)→ 6θ .

If g(θ) = exp(-θh) = ρ(h), (h > 0), one obtains

TEθ (exp(−θ
∗
Th)− exp(−θh))→

(
θh−2+

α + β

2
−δθ

)
hexp(−θh).
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Examples

If g(θ) = c
θ

+d (c and d constants), assumption in the previous

Proposition is not satis�ed and we have

2g ′(θ) + θg ′′(θ) = 0.

Actually, a slight modi�cation of the proof gives

T .Eθ (g(θ̄T )−g(θ))→ 0,

which is natural since g(θ̄T ) is an unbiased estimator of g(θ)!
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Reducing the bias for θ

If δθ = δ does not depends on θ , one may reduce the bias of θT by

putting

θ
(1)
T = θT −

2− α+β

2 + δ

T
,

then, clearly, θ
(1)
T remains asymptotically e�cient and

T .Eθ (θ
(1)
T −θ)→ 0.

Note that θ
(1)
T ∈F , actually θ

(1)
T = θT

(
α,β ,∆T −

2− α+β

2 +δ

T

)
. In

particular, for θ̂T , θ̌T , θ̃T andθ̄T , θ
(1)
T is obtained by substracting

2
T
.
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Reducing the bias for g(θ )

The situation is somewhat di�erent for g(θ); putting

˜̄
θT = max

(
θ̄T −

2

T
,exp(−T )

)
one obtains

TEθ

(
g( ˜̄

θT )−g(θ)
)
→ θg ′′(θ).

If g ′.g ′′ is positive, the absolute value of the asymptotic bias is

reduced, but it is not the case in a general situation (cf

g(θ)=exp(-θ) at θ = 3).
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